
References

18 of 18 MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW

[8] J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework for Simulating and Prototyping Heter-

ogeneous Systems”, International Journal of Computer Simulation, to appear, 1993.

[9] J. Buck and E. A. Lee, “The Token Flow Model,” presented at Data Flow Workshop, Hamilton Island, Australia,

May, 1992.

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A Declarative Language for Programming Syn-

chronous Systems,” Conference Record of the 14th Annual ACM Symp. on Principles of Programming Lan-

guages, Munich, Germany, January, 1987.

[11] A. L. Davis and R. M. Keller, “Data Flow Program Graphs”, Computer, 15(2), February, 1982.

[12] J.B. Dennis, “First Version Data Flow Procedure Language”, Technical Memo MAC TM61, May, 1975, MIT

Laboratory for Computer Science.

[13] P. N. Hilfinger, “Silage Reference Manual, DRAFT Release 2.0”, Computer Science Division, EECS Dept.,

University of California, Berkeley, CA 94720, July 8, 1989.

[14] R. Jagannathan and A. A. Faustini, “The GLU Programming Language,” Tech. Report SRI-CSL-90-11, Com-

puter Science Laboratory, SRI International, Menlo Park, CA 94025, USA, November 1990.

[15] S. Y. Kung, VLSI Array Processors, Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[16] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Data Flow Programs for Digital Signal

Processing” IEEE Transactions on Computers, January, 1987.

[17] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow” IEEE Proceedings, September, 1987.

[18] E. A. Lee, “Consistency in Dataflow Graphs”, IEEE Transactions on Parallel and Distributed Systems”, Vol. 2,

No. 2, April 1991.

[19] J. McGraw, “Sisal: Streams and Iteration in a Single Assignment Language”, Language Reference Manual,

Lawrence Livermore National Laboratory, Livermore, CA 94550.

[20] H. Printz, “Automatic Mapping of Large Signal Processing Systems to a Parallel Machine,” Memorandum

CMU-CS-91-101, School of Computer Science, Carnegie Mellon University, Ph.D. Thesis, May 15, 1991.

[21] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Systems,” in Proc. of

the Int. Conf. on Application Specific Array Processors, IEEE Computer Society Press, August 1992.

[22] G.C. Sih, E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous

Processor Architectures”, to appear, IEEE Trans. on Parallel and Distributed Systems, 1992.

[23] G. C. Sih and E. A. Lee, “Declustering: A New Multiprocessor Scheduling Technique,” to appear in IEEE

Trans. on Parallel and Distributed Systems, 1992.

[24] D. B. Skillcorn, “Stream Languages and Data-Flow,” in Advanced Topics in Dataflow Computing, ed. L. Bic

and J.-L. Gaudiot.

[25] P. A. Suhler, J. Biswas, K. M. Korner, J. C. Browne, “TDFL: A Task-Level Dataflow Language”, J. on Parallel

and Distributed Systems, 9(2), June 1990.

Caveats

MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW 17 of 18

6.0 Caveats

A programming model based on dataflow that supports multidimensional streams has

been outlined. However, we have only defined a language in sufficient detail to illustrate some

simple examples. It is not clear at this point that a language based on these principles will be easy

to use. Certainly the matrix multiplication program in figure 18 is not very readable. Algorithms

with less regular structure will only be more obtuse. This difficulty will be exacerbated when a

multidimensional DF language based on the token flow model is developed. However, the analyt-

ical properties of programs expressed this way are compelling. Parallelizing compilers should be

able to do extremely well with these programs without relying on runtime overhead for task allo-

cation and scheduling. We conclude, therefore, that further investigation is certainly warranted. At

the very least, the method looks promising to supplement large-grain dataflow languages. It may

lead to special purpose languages, but could also ultimately form a basis for a language that, like

Lucid, supports multidimensional streams, but is easier to analyze, partition, and schedule at com-

pile time.

7.0 References

[1] Arvind and J. D. Brock, “Resource Managers in Functional Programming,” J. of Parallel and Distributed Com-

puting, Vol. 1, No. 5-21, 1984

[2] E. A. Ashcroft, “Proving Assertions about Parallel Programs,” J. of Computer and Systems Science, Vol. 10, No.

1, pp. 110-135, 1975.

[3] E. A. Ashcroft and R. Jagannathan, “Operator Nets,” in Proc. IFIP TC-10 Working Conf. on Fifth-Generation

Computer Architectures, North-Holland, The Netherlands, 1985.

[4] A. Benveniste, B. Le Goff, and P. Le Guernic, “Hybrid Dynamical Systems Theory and the Language ‘SIG-

NAL’”, Research Report No. 838, Institut National de Recherche en Informatique at en Automatique (INRIA),

Domain de Voluceau, Rocquencourt, B. P. 105, 78153 Le Chesnay Cedex, France, April 1988.

[5] S. Bhattacharyya and E. A. Lee, “Scheduling Synchronous Dataflow Graphs for Efficient Looping,” to appear in

J. of VLSI Signal Processing, 1992.

[6] J. Bier, E. Goei, W. Ho, P. Lapsley, M. O’Reilly, G. Sih and E.A. Lee, “Gabriel: A Design Environment for

DSP,” IEEE Micro, October 1990, Vol. 10, No. 5, pp. 28-45.

[7] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Multirate Signal Processing in Ptolemy”, Proc. of the Int.

Conf. on Acoustics, Speech, and Signal Processing, Toronto, Canada, April, 1991.

Neither Demand nor Data-Driven Execution

16 of 18 MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW

A data-driven or demand-driven style of computation can ameliorate such problems. We

will now show, however, that neither data-driven nor demand driven execution is a panacea. Con-

sider the two SDF graphs in figure 21. Source actors, such as A and B, have no inputs, and hence

are always enabled. They model internally generated token streams, or external inputs, which

have side effects. Modeling such external inputs was a principal motivation for the development

of stream data types in Id [1]. Sink actors, such as E and F can similarly model program outputs.

Suppose that . If a data-driven style of execution is used at run time, ignoring the informa-

tion about the number of tokens produced and consumed, then some additional control is required

to keep A or B from producing an unbounded number of tokens that will accumulate in memory.

That additional control is not provided by the data-driven model. A demand-driven style of execu-

tion solves the problem for the A-B-C graph, but encounters the same problem with the D-E-F

graph. Again, additional control is needed. A typical approach in data-driven execution is to throt-

tle a producer when its tokens are not being consumed, but this approach incurs run-time over-

head.

SDF, MD-SDF, and the dynamic extensions based on the token flow model solve all of

these problems. The relative firing rates for the graphs in figure 21 are determined at compile

time, so the model of execution is neither data driven nor demand driven. Moreover, the execution

model is complete, requiring no additional control, and there is no loss of concurrency. Similar

results are obtained using the token flow for graphs that do not fit the SDF model [9]. For multidi-

mensional streams, permissible firing patterns are again determined at compile time. For example,

suppose the index space for the self-loop of actor C in figure 20 is doubly infinite (infinite in both

dimensions). The permissible wavefront pattern of execution and all the parallelism it implies can

be determined at compile time, and appropriate run-time control flow can be synthesized.

A

B

C E

F

D
1

1

N

M

1

1
M

N

 Figure 21. Two SDF graphs that illustrate problems with both demand and
data-driven execution.

M N≠

Neither Demand nor Data-Driven Execution

MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW 15 of 18

giving the number of samples produced and consumed by an actor. This is necessary to use multi-

dimensional dataflow over non-rectangular index spaces.

5.0 Neither Demand nor Data-Driven Execution

Since streams are data structures like any other, streams of streams can be formed,

although functional operations on such composite objects can be ambiguous. Consider for exam-

ple a stream of streams of infinite length. Consider a function applied to the stream.

This constitutes the nested infinite iteration

forall i in (0 ...) { forall j in (0 ...) { }},

where represents the element of the stream .We assume non-strict semantics (neces-

sary for such operators on infinite streams to make sense) and functional semantics (so that we

can use the “forall” construct, which implies no ordering constraint). For functional operators on

finite sets of data elements, the order of execution does not matter. However, the order of execu-

tion of the above iteration, although unspecified, is clearly important. Consider the difference

between

for i in (0 ...) { forall j in (0 ...) { }}.

and

forall i in (0 ...) { for j in (0 ...) { }},

where the “for” construct implies sequential execution.

For practical applications, we can restrict streams of streams so that they are infinite in one

dimension only, in which case there is no ambiguity of specification. There remains, however,

some ambiguity of execution. Consider the nested iteration

forall i in (0 ...) { forall j in (0 ...) { }}

If this is executed as

for i in (0 ...) { for j in (0 ...) { }},

then only the infinite stream for will be processed.

s pi f s()

∞ ∞ f pi j,()

pi j, j th− pi

∞ ∞ f pi j,()

∞ ∞ f pi j,()

M ∞ f pi j,()

M ∞ f pi j,()

i 0=

Multidimensional Dataflow

14 of 18 MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW

These are identified in figure 19. Note that all of these actors simply control the way tokens are

exchanged and need not involve any run-time operations. Of course, a compiler then needs to

understand the semantics of these operators.

4.6 State

For large-grain dataflow languages, it is desirable to permit actors to maintain state infor-

mation. From the perspective of their dataflow model, an actor with state information simply has a

self-loop with a delay. Consider the three actors with self loops shown in figure 20. Assume, as is

common, that dimension 1 indexes the row in the index space, and dimension 2 the column, as

shown in figure 9. Then each firing of actor A requires state information from the previous row of

the index space for the state variable. Hence, each firing of A depends on the previous firing in the

vertical direction, but there is no dependence in the horizontal direction. The first row in the state

index space must be provided by the delay initial value specification. Actor B, by contrast,

requires state information from the previous column in the index space. Hence there is horizontal,

but not vertical dependence among firings. Actor C has both vertical and horizontal dependence,

implying that both an initial row and an initial column must be specified. Note that this does

imply that there is no parallelism, since computations along a diagonal wavefront can still proceed

in parallel. Moreover, this property is easy to detect automatically in a compiler. Indeed, all mod-

ern parallel scheduling methods based on projections of an index space [15] can be applied to pro-

grams defined using this model.

4.7 Asynchronous Actors

The token flow model, which permits SWITCH and SELECT actors, can be easily

extended to multiple dimensions by simply allowing symbolic placeholders inside the M-tuples

A

(1,0)

B

(0,1)

C

(1,1)

 Figure 20. Three macro actors with state represented as a self-loop.

Multidimensional Dataflow

MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW 13 of 18

needed in a single-assignment specification to carry a variable forward in the index space [15]. An

intelligent compiler need not actually copy the matrices to fill an area in memory. The data in the

two cubes is then multiplied element-wise, and the resulting products are summed along dimen-

sion 2. The resulting sums give the LxN matrix product. The MD-SDF graph implementing this is

shown in figure 18. The key actors used for this are:

Upsample: In specified dimension(s), consumes 1 and produces N, inserting zero values.

Repeat: In specified dimension(s), consumes 1 and produces N, repeating values.

Downsample: In specified dimension(s), consumes N and produces 1, discarding samples.

Transpose: Consumes and M-dimensional block of samples and outputs them with the dimen-

sions rearranged.

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)

Transpose Parameter: (3,1,2)T

A
(L,M)

B
(M,N)

(L,1,1)

(1,1,1)

Repeat

T

(1,M,1)

(1,1,1)

(L,1,N)

(L,N,1)

Transpose Parameter: (1,3,2)

 Figure 18. Matrix multiplication in MD-SDF.

(L,M,N)(L,M,1)
Upsample

(L,M,1)(L,M,N)

Downsample

(L,M,N)(L,M,1)

Repeat
(M,N,L)(L,M,N)

Transpose

Parameter: (2,3,1)

T

 Figure 19. : Some key MD-SDF actors that affect the flow of control.

Multidimensional Dataflow

12 of 18 MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW

of the arc, the specified dimensions are assumed to be the lower ones (lower number, earlier in

the M-tuple). Hence, the two graphs in figure 15 are equivalent.

We can specify a comparable rule for delays:

• If the dimensionality specified for a delay is lower than the dimensionality of an arc, then the

specified delay values correspond to the lower dimensions. The unspecified delay values are

zero. Hence, the graphs in figure 16 are equivalent.

4.5 Matrix Multiplication

As another example, consider a fine-grain specification of matrix multiplication. Suppose

we are to multiply an LxM matrix by an MxN matrix. In a three dimensional index space, this can

be accomplished as shown in figure 17. A 3D index space is used. The original matrices are

embedded in that index space as shown by the shaded areas. The remainder of the index space is

filled with repetitions of the matrices. These repetitions are analogous to assignments often

K(M,N)
A B

(K,1)(M,N)
A B

 Figure 15. Rule for augmenting the dimensionality of a producer or consumer.

(M,N)
A B

(K,L)(M,N)
A B

(K,L)D

(D,0)

 Figure 16. Rule for augmenting the dimensionality of a delay.

L

M

N

M

N

L
1

2

3

Dimensions

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

 Figure 17. Matrix multiplication represented schematically.

Multidimensional Dataflow

MULTIDIMENSIONAL STREAMS ROOTED IN DATAFLOW 11 of 18

A delay in MD-SDF in associated with a tuple as shown in figure 13. It can be interpreted

as specifying boundary conditions on the index space. Thus, for 2D-SDF, as shown in the figure, it

specifies the number of initial rows and columns. It can also be interpreted as specifying the direc-

tion in the index space of a dependence between two single assignment variables, much as done in

reduced dependence graphs [15].

Using MD-SDF delays, the repeated inner product can be specified as shown in figure 14.

The only significant difference between this and figure 13 is the multidimensional delay. Its effect

is illustrated schematically in figure 14, where the index space for the output of the delay is

shown. The shaded area is the initial condition specified by the delay. Note that the index space

for each arc in the system can be (and usually will be) different, unlike reduced dependence

graphs [15].

4.4 Mixing Dimensionality

Note that in figure 14, 2D and 1D-SDF are mixed. We use the following rule to avoid any

ambiguity:

• The dimensionality of the index space for an arc is the maximum of the dimensionality of the

producer and consumer. If the producer or the consumer specifies fewer dimensions than those

d1 d2,()

 Figure 13. A delay in MD-SDF is multidimensional.

1

1

1 1(8,1)

(8,1)

A

B

1
1 1

(1,0)

(8,1)

X

Index space for variable X:

 Figure 14. Repeated inner products in MD-SDF.

